However, the nature of cortical representation of objects in the human brain remains controversial. The analysis of MRI ... ... (Show context)... neuroiming and mostly relied on data taken from non-human primate studies (Tanaka, 1996, 1997; ... representions that must be linked (see Levin, 1991; Willshaw, 1981). Thus, changes in the weight matrix, IU, which ... It's T X c/;; In the case of ... Page 2 Thomas A. Carlson, Paul Schrater, Sheng On - J. Cogn. Neurosci , 2002 ... computational model of human memory for serial order (OSCillator-based Associative Recall (OSCAR) is described. (Show ... A simple form of training for hebbians is used, in which the weight change matrix is given by an external product of ... Gordon DA Brown, Charles Hulme, Tim Price - Psychological Review, 2000 ... The ... Rumelhart and McClelland (37). The link between experimental and computational literature is due to the parallel between ... 1981-z-). They offered a completely different ... of individual elements at all. This more coniferous look resembles a gestalt-no... Andrew G. Barto, R.S. Sutton, CJ C. ... integration can be found in distributed memory models based on ideas of filtration appropriateness, ... 1977; see, we found that our modeling method is exceptionally useful for studying processing systems, as we have ... 1977; Grossberg, 1980; Anderson, 1977; Grossberg, 1980; 1977) see, we found that our modeling method is exceptionally useful for studying processing systems, as we have ... Letters is considered, developed and tested. According to the model, the context helps to perceive the target letters as ... 1981-z-; In these models, the perception sample is compared to a list of saved representations of alternative stimuli ... Other examples of ... 1981-z-; Grossberg, 1980; Anderson, 1977; Grossberg, 1980; 1977) see, we found that our modeling method is exceptionally useful for studying processing systems, as we have ... 1977; see, we found that our modeling method is exceptionally useful for studying processing systems, as we have...
...where several models have been developed that simulate a distributed representation of information. A salient feature of these models is that they assume the brain is composed of many small, discrete memory modules, each of which can store a small amount of information. These modules are interconnected by a network of synapses, which allows for the transfer of information between different parts of the brain. The models are able to simulate a variety of cognitive phenomena, such as learning, memory, and decision-making.

A key feature of these models is the presence of a distributed memory system, which is characterized by a large number of interconnected memory modules. This system is thought to allow for a more efficient storage and retrieval of information, as it reduces the likelihood of interference between different memories. The models also simulate a form of interference, known as proactive interference, which occurs when the retrieval of one memory is affected by the presence of another memory.

One of the most notable features of these models is their ability to simulate the forgetting curve, which describes how memories fade over time. The models are able to simulate the decay of memories due to a lack of rehearsal and the interference from other memories.

In summary, distributed memory models provide a powerful framework for understanding the cognitive processes underlying human memory. They have been able to simulate a variety of cognitive phenomena, such as learning, memory, and decision-making, and have been used to explain a wide range of cognitive data. However, they are limited in their ability to simulate more complex cognitive processes, such as the ability to generate novel ideas or the ability to reason about abstract concepts.